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ABSTRACT: Static load test (SLT) is usually used to obtain the bearing characteristics of a pile. However, it
requires relatively high cost and testing period. In contrast, rapid load testing requires less cost and testing
period. As one of rapid load test methods, Spring Hammer (SH, hereafter) rapid load test method has been
developed in Japan. In this paper, validity of the SH test method with a simplified signal interpretation to
estimate the static behaviour of a pile is discussed and demonstrated through comparison of the results from
SLT and the SH test, as well as the results from dynamic load test (DLT).

1 INTRODUCTION

In Thailand, static load test (SLT) or dynamic load
test (DLT) is employed to obtain the bearing
characteristics of a pile. Due to the lack of capable
dynamic load test result interpreter, it is widely
believed that static load test is the most reliable
method to obtain the load-settlement behaviour of a
pile. However, static load test requires high cost and
testing period. Therefore, pile design has been
mainly based on empirical equations and soil
information from borehole investigation without any
load test by adopting excessive design requirements,
i.e. high factor of safety.

In order to overcome the above situation, rapid
load test methods have been proposed. As one of
rapid load test methods, the Spring Hammer test (SH
test) was developed in Japan (Matsumoto et al.,
2004). Loading mechanism of the SH test is
basically similar to Dynatest (Gonin & Leonard,
1984) Statnamic test (Bermingham & Janes, 1989)
and Pseudo-static test (Schellingerhout & Revoort,
1996). In the SH test method, the simple non-linear
damping interpretation method (Matsumoto et al.,
1994) is usually used to derive static load-settlement
curve.

In this paper, in order to verify the applicability
of the SH test in Thailand. SH tests were conducted
on driven concrete piles at five DRR (Dept. of Rural
Roads) bridge construction sites in Thailand. The
validity of the SH test method to estimate the static
behaviour of a pile is examined through comparison
of the results from SLT, DLT and the SH test.

2 SPRING HAMMER TEST METHOD

Several SH test devices are available, although their
loading mechanism and measuring system are the
same in the devices. Figure 1 shows the loading
system and the measurement system of the SH test.

Figure 2 shows a SH test device used in this work.
A spring unit is mounted on the leader mast of pile
driving rig to prevent deviations of the central axis
of pile, spring unit and hammer. Maximum load
capacity is 2500 kN when using a hammer mass of
9.3 ton and a falling height of 1 m, which ensures
confirmation of static pile capacity at least 2000 kN

A load cell is placed on the pile top directly, on
which the spring unit is placed. A hammer mass is
dropped onto the spring unit to provide impact
loading on the pile top. The acceleration at the pile
top is measured using two accelerometers.

The pile top displacement is measured by means
of a laser or an optical displacement transducer. The
dynamic signals are sampled at a sampling
frequency greater than 1 kHz. The output dynamic
signals are recorded through a computerised data
acquisition system. The recorded dynamic signals
are promptly processed to derive ‘static’ response of
the pile using the Non-Linear Damping method.

The spring unit consists of a number of coned
disc springs. The total spring stiffness of the spring
unit is easily controlled by changing arrangement of
the coned disc springs. The maximum load and
loading duration can be widely varied by changing
combination of the spring stiffness, the hammer
mass and the falling height of hammer.
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Figure 2. SH test device used in DRR construction sites.

One of advantages of the rapid load test is that
simplified interpretation methods, in which the pile
is treated as a rigid mass neglecting wave
propagation phenomena in the pile, could be used to
derive a static load-displacement relation from the
measured signals.

Figure 3 shows the modelling of pile and soil
during rapid pile load testing. The pile is assumed as
a rigid mass having mass of M,, and the soil is
modelled by a spring and a dashpot in parallel. This
modelling has been advocated by Middendorp et al.
(1992) and Kusakabe & Matsumoto (1995).

The additional soil mass beneath the end plate, M,
can be estimated as follows following Randolph &
Deeks (1992):

0.1-v*

(1-v)

where v and p; are Poisson's ratio and density of the
soil, and D is the plate diameter.

Figures 4 and 5 show the notations used in the
non-linear damping method. The applied load, Frapid,
is equal to the sum of the soil resistance, Fy, and
the inertias of the pile mass and the additional soil
mass:

M, =2D? Py (M
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Fsoil(i):Frapid(i)_(Mp +Ms)' ali) (2)
- mpid(i)_M'a(i)

where M is the sum of the pile mass and the
additional soil mass, and «a(i) is the measured pile
acceleration at time step i.

The soil resistance, Fi, is the sum of the spring
resistance (static resistance), Fy, and the dashpot
resistance, F.

Fon(i)=F, @)+ F, (i) = F,, i)+ C()-v(0) 3)

where C(i) is the damping factor and v(i) is the pile
velocity at time step i.

At the first step (i = 1), the initial stiffness, K(1),
is calculated by the initial static load, Fy(1), divided
by the initial displacement, w(1).

K(l) = FW (1)/W(1) = Fstatic /Wstatic (4)

At the next step (at step i+1), the soil spring,
K(i+1) is assumed to be equal to K(7) as indicated by
Eq. (5). Hence, the static resistance, F\(i+1), at step
i+1 is calculated by Eq. (6). The value of C(i+1) can
be determined by means of Eq. (7).

K(i+1)=K() (5)

Fo(i+1)=F, i)+ K@ +1)- {wli +1) = wli)} (6)

Cli+1)={F i +1)-F, G+ D)}/ v(i +1) (7)
Frapia

Pile mass, M,, with
additional soil mass,
Ms

spring, K
(Fw)

_| |dashpot, C
(Fv)

Figure .3 Modelling of rapid load test.

0 Force, F

Displacement, w

Fso»l = Frapid - (Mp"’ Ms)a

Figure 4. Correction of inertia to obtain soil resistance.
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Figure 5. Non-Linear Damping interpretation.

At the following step i+2, C(i+2) is assumed to be
equal to C(i+1) as indicated by Eq. (8). Therefore,
the values of F\(i+2) and K(i+2) can be determined
by means of Egs. (9) and (10), respectively.

(z+2): C(i+1) (8)
Fo(i+2)=Fli+1)-C(i+2)- (i +2) )
Fo(i+2)-F,(i+1)

K+ 2)= = e ) (10)

By repeating the procedure from Eq. (5) to Eq.
(10), the values of K and C for following steps are
alternately updated consecutively. Finally, the whole
static load-displacement relation, F, vs w, is
constructed as shown in Figure 5.

3 TEST DESCRIPTION

Figure 6 shows the profiles of soil layers and SPT
N-values at the five DRR bridge construction sites in
Petchaburi, Lampang, Chaiyapum, Pangnga and
Rayong, together with driven concrete piles. The
driven concrete piles were used for the foundations
of the bridges. Properties of the piles are
summarised in Table 1.

Three piles at each construction site were
subjected to the dynamic load tests and the SH rapid
load tests. The tests were conducted after a curing
period of 14 days from the end of the pile driving.
Load tests were carried out to confirm proof load (2
times of allowable load).

In addition, static load tests were carried out on
one of the three piles at each site approximately 1 to
2 months after the DLT and SH tests. Note that due
to the site condition at Rayong site, static load test
was not conducted on the same pile as the DLT and
SH tests, but a SLT was carried out on the pile
located in the next bridge abutment foundation about
100 m away from the pile which the DLT and SH
tests were carried out.

Table 1. Properties of the piles.

Site . . . Allowable
Site name Dimension . .
No. pile capacity
1 Petchaburi 0.40x0.40m 500 kN
2 Lampang 0.40%0.40m 500 kN
3 Chaiyapum 0.40%0.40m 500 kN
4 Pangnga 0.40%0.40m 500 kN
5 Rayong 0.65%0.65m 800 kN

4 RESULTS OF PILE LOAD TESTS

4.1 Results of SH tests in Pangnga site

Figure 7 shows examples of dynamic signals from
rapid load test on pile No. 2 in Pangnga Site: (a) pile
head force, (b) acceleration, (c) velocity and (d)
displacement. The pile head velocity was obtained
by integration of the measured acceleration with
respect to time. The pile head displacement was
obtained by double time integration of the measured
acceleration.

The loading duration, #, was 60 ms that
corresponded to the relative loading duration T, =
t/(2L/c) = 12, where L and c are the pile length and
the wave propagation speed (¢ = 4000 m/s) in the
RC driven pile, respectively. In the Method for
Rapid Load Test of Single Pile by Japanese
Geotechnical Society (2002), load test with T
greater than 5 is regarded as rapid loading where
wave propagation phenomena in the pile can be
neglected.

Figure 8 shows the measured Fiapiq vs w from 5
different hammer dropping heights varied from 0.4
to 2.0 m.

Figure 9 shows the derived static load-
displacement F,, vs w, together with the static
load-displacement obtained from SLT and DLT with
wave matching analysis. It can be seen that there is
good agreement between load test results.

4.2 Results of Load Tests in Other Sites

Figures 10 to 13 show comparisons of load-
displacement relations from SLT, DLT and SH tests
in Chaiyapum, Petchaburi, Rayong and Lampang
sites, respectively. Good agreement between load
test results of Chaiyapum and Petchaburi sites are
seen in the figures. In Rayong site although the SLT
was carried out on different pile which DLT and SH
tests were conducted, there is good agreement
between load test results as shown in Figure 12.

Good agreement between DLT and SH tests
results of Lampang site is shown in Figure 13.
However, SLT result shows a different trend. This is
thought to be due to that the pile tip of the test pile
during the static load test penetrated into the silty
sand layer that have lower SPT N-value than the
above sand layer.
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Figure 6. Profiles of soil layers and SPT N-values in DRR bridge construction sites, together with pile lengths.
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Figure 7. Examples of measured dynamic signals.
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5 CONCLUDING REMARKS

The validity of the SH rapid load test was examined
through comparisons of static, dynamic and rapid
load tests on the RC driven piles.

The RC driven piles were used for foundations of
bridges in five construction sites. It was confirmed
that all the piles in the five sites have the pile
capacity greater than the required values.

The case studies presented in this paper
encourage the use of rapid pile load testing for
construction and quality controls of the constructed
piles in Thailand.
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Foundation design is changing from conventional design methods to design frameworks such as

limit state approaches; performance-based design; load and resistance factor design or
probabilistic design. In this context, load tests of single piles and plate-load tests on a construction
site are necessary as 'element tests' for design of foundation systems such as pile groups (and
rafts). The number of tests on site is also a key factor in the foundation design. Hence, the role of
dynamic tests including rapid load and vibratory test methods are becoming increasingly
important in the processes of the new design frameworks.

The objective of the conference is to provide an international forum for practitioners, academics
and researchers from various counftries fo share and disseminate their knowledge, experience and
expertise in the field of pile engineering. Emphasis will be placed on the effective use of pile

testing applied to design of foundation systems.
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The word "Testing" covers the full range of test methods including Dynamic Load Testing (DLT),
Rapid Load Testing (RLT). Sonic Integrity Testing (SIT), other integrity festing, Static Load Testing
(SLT), ground investigations and related numerical and physical modeling while "Design" implies
the use of the test and experimental results in the design of whole foundation systems such as pile
groups and piled raft foundations.

The conference will also include papers relating to the testing of shallow foundations and

informative case histories involving 'testing' and 'design’.

1. Application of stress-wave theory to piles
1.1.  Wave mechanics applied to pile engineering
1.
1.

Relationship between static resistance to driving and long-term static soil resistance
Case histories involving measurement and analysis of stress waves

Dynamic monitoring of driven piles

Numerical and physical modeling of dynamic soil-pile interaction

High-strain dynamic testing

Low-strain dynamic testing

Rapid load testing
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Monitoring and analysis of vibratory driven piles

©

Correlation of dynamic and static pile load tests

Quality assurance of deep foundations using dynamic methods

N

Incorporation of dynamic festing info design codes and testing standards

w

Ground vibrations (environmental impact) induced by pile motions

>

Drivability analysis for impact and vibratory hammers

o

Dynamic horizontal load festing



2. Other pile load test and analysis methods

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.

Static load testing

Osterberg cell tests

Horizontal load testing

Tension load testing

Numerical and physical modeling of static soil-pile interaction

New test methods for deep foundation

3. Pile integrity test methods other than sonic integrity (low-strain) testing

4. Testing other than pile testing

4.1.
4.2.

Static and dynamic plate load testing

Dynamic methods for ground investigations

5. Use of test results in the design of a foundation system (such as a pile group, piled raft, etc.)

5. 1. Construction control of piles
5.2. Testing programs of quality control techniques for piling projects
5.3. Re-use of existing old foundations
5.4. Applying pile test results to design of piled foundations
5.5. Design of foundation systems based on reliability, probabilistic, or statistical approaches
5. 6. Design of foundation systems based on performance-based design approach
5.7. Application of pile test results to design in an LRFD context
5.8. Statistical methods for designing test programs and evaluating test results
5.9. Economic considerations for deep foundation design and testing
5.10. Environmental considerations for deep foundation design and testing
5.11. Correlation of results of pile tests, soil tests, and site investigations
5.12. Incorporation of pile testing into design codes and testing standards
6. Testing and design methods for energy piles
7. Case histories involving testing and design
8. Others
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for review, dealing with one or more of the Conference subjects relating to pile engineering
and technology. Emphasis will be placed on pile testing and the use of test results in the design
of pile foundation systems as well as well-documented case histories.
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Registration

The registration page will open later in 2011.

Hotel accommodation

Three official hotels are available with special rates as follows:

Twin room
Grade Hotel name Single room
Single use Twin use
A Kanazawa New Grand Hotel 8,500 12,000 16,000
B Kanazawa Excel Hotel 9,500 12,500 16,000
C Toyoko Inn Kanazawa Korinbo 5,000 7.000 7,000

Discount rates for registered person from foreign countries
The rates of the official hotels are discounted by 50 % for registered persons from foreign
countries from 16th to 21st September 2012 (Six nights maximum). At least one registered
person is required for each room.
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Kanazawa is known widely as “sho-Kyoto™ or “little Kyoto™, and has provision for a wide range

of post-conference tours and activities, as well as possibilities for custom programs. Kanazawa,
along with the outlying areas of natural beauty, offers virtually endless clombinoﬁons for its visitors.
Flights to Komatsu International Airport near Kanazawa from Tokyo (Narita), Tokyo (Haneda),
Shanghai, Seoul and Taiwan are available. Kanazawa is also accessible by trains to and from

maijor cities in Japan.
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E-mail: office@ is-kanazawa2012.jp

Homepage: http://www.is-kanazawa2012.jp

Address: IS-Kanazawa 2012 Organizing Committee
Att. Prof. Tatsunori Matsumoto

Department of Civil Engineering, Kanazawa University,
Kongzowo, 920-1192, JAPAN

Phone and Fax: (+81) 76-234-4625





